A reversible early oxidized redox state that precedes macromolecular ROS damage in aging nontransgenic and 3xTg-AD mouse neurons.

نویسندگان

  • Debolina Ghosh
  • Kelsey R LeVault
  • Aaron J Barnett
  • Gregory J Brewer
چکیده

The brain depends on redox electrons from nicotinamide adenine dinucleotide (reduced form; NADH) to produce ATP and oxyradicals (reactive oxygen species [ROS]). Because ROS damage and mitochondrial dysregulation are prominent in aging and Alzheimer's disease (AD) and their relationship to the redox state is unclear, we wanted to know whether an oxidative redox shift precedes these markers and leads to macromolecular damage in a mouse model of AD. We used the 3xTg-AD mouse model, which displays cognitive deficits beginning at 4 months. Hippocampal/cortical neurons were isolated across the age span and cultured in common nutrients to control for possible hormonal and vascular differences. We found an increase of NAD(P)H levels and redox state in nontransgenic (non-Tg) neurons until middle age, followed by a decline in old age. The 3xTg-AD neurons maintained much lower resting NAD(P)H and redox states after 4 months, but the NADH regenerating capacity continuously declined with age beginning at 2 months. These redox characteristics were partially reversible with nicotinamide, a biosynthetic precursor of NAD+. Nicotinamide also protected against glutamate excitotoxicity. Compared with non-Tg neurons, 3xTg-AD neurons had more mitochondria/neuron and lower glutathione (GSH) levels that preceded age-related increases in ROS levels. These GSH deficits were again reversible with nicotinamide in 3xTg-AD neurons. Surprisingly, low macromolecular ROS damage was only elevated after 4 months in the 3xTg-AD neurons if antioxidants were removed. The present data suggest that a more oxidized redox state and a lower antioxidant GSH defense can be dissociated from neuronal ROS damage, changes that precede the onset of cognitive deficits in the 3xTg-AD model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease.

Mitochondrial dysfunction has been proposed to play a pivotal role in neurodegenerative diseases, including Alzheimer's disease (AD). To address whether mitochondrial dysfunction precedes the development of AD pathology, we conducted mitochondrial functional analyses in female triple transgenic Alzheimer's mice (3xTg-AD) and age-matched nontransgenic (nonTg). Mitochondrial dysfunction in the 3x...

متن کامل

Relative importance of redox buffers GSH and NAD(P)H in age-related neurodegeneration and Alzheimer disease-like mouse neurons

Aging, a major risk factor in Alzheimer's disease (AD), is associated with an oxidative redox shift, decreased redox buffer protection, and increased free radical reactive oxygen species (ROS) generation, probably linked to mitochondrial dysfunction. While NADH is the ultimate electron donor for many redox reactions, including oxidative phosphorylation, glutathione (GSH) is the major ROS detoxi...

متن کامل

Early-Onset Network Hyperexcitability in Presymptomatic Alzheimer’s Disease Transgenic Mice Is Suppressed by Passive Immunization with Anti-Human APP/Aβ Antibody and by mGluR5 Blockade

Cortical and hippocampal network hyperexcitability appears to be an early event in Alzheimer's disease (AD) pathogenesis, and may contribute to memory impairment. It remains unclear if network hyperexcitability precedes memory impairment in mouse models of AD and what are the underlying cellular mechanisms. We thus evaluated seizure susceptibility and hippocampal network hyperexcitability at ~3...

متن کامل

Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer's disease.

Alzheimer's disease (AD) is the most prevalent form of dementia among the elderly and is a complex disorder that involves altered proteolysis, oxidative stress and disruption of ion homeostasis. Animal models have proven useful in studying the impact of mutant AD-related genes on other cellular signaling pathways, such as Ca2+ signaling. Along these lines, disturbances of intracellular Ca2+ ([C...

متن کامل

Oxidative Stress Is a Central Target for Physical Exercise Neuroprotection Against Pathological Brain Aging.

Physical exercise is suggested for preventing or delaying senescence and Alzheimer's disease (AD). We have examined its therapeutic value in the advanced stage of AD-like pathology in 3xTg-AD female mice through voluntary wheel running from 12 to 15 months of age. Mice submitted to exercise showed improved body fitness, immunorejuvenation, improvement of behavior and cognition, and reduced amyl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 17  شماره 

صفحات  -

تاریخ انتشار 2012